83 research outputs found

    Nilpotent Approximations of Sub-Riemannian Distances for Fast Perceptual Grouping of Blood Vessels in 2D and 3D

    Get PDF
    We propose an efficient approach for the grouping of local orientations (points on vessels) via nilpotent approximations of sub-Riemannian distances in the 2D and 3D roto-translation groups SE(2)SE(2) and SE(3)SE(3). In our distance approximations we consider homogeneous norms on nilpotent groups that locally approximate SE(n)SE(n), and which are obtained via the exponential and logarithmic map on SE(n)SE(n). In a qualitative validation we show that the norms provide accurate approximations of the true sub-Riemannian distances, and we discuss their relations to the fundamental solution of the sub-Laplacian on SE(n)SE(n). The quantitative experiments further confirm the accuracy of the approximations. Quantitative results are obtained by evaluating perceptual grouping performance of retinal blood vessels in 2D images and curves in challenging 3D synthetic volumes. The results show that 1) sub-Riemannian geometry is essential in achieving top performance and 2) that grouping via the fast analytic approximations performs almost equally, or better, than data-adaptive fast marching approaches on Rn\mathbb{R}^n and SE(n)SE(n).Comment: 18 pages, 9 figures, 3 tables, in review at JMI

    A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2)

    Get PDF
    We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2)=R2⋊S1SE(2) = \mathbb{R}^2 \rtimes S^1 with a metric tensor depending on a smooth external cost C:SE(2)→[δ,1]\mathcal{C}:SE(2) \to [\delta,1], δ>0\delta>0, computed from image data. The method consists of a first step where a SR-distance map is computed as a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) system derived via Pontryagin's Maximum Principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. For C=1\mathcal{C}=1 we show that our method produces the global minimizers. Comparison with exact solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell points and cusp points, which we again verify for the uniform cost case C=1\mathcal{C}=1. Regarding image analysis applications, tracking of elongated structures in retinal and synthetic images show that our line tracking generically deals with crossings. We show the benefits of including the sub-Riemannian geometry.Comment: Extended version of SSVM 2015 conference article "Data-driven Sub-Riemannian Geodesics in SE(2)

    Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis

    Full text link
    Regular group convolutional neural networks (G-CNNs) have been shown to increase model performance and improve equivariance to different geometrical symmetries. This work addresses the problem of SE(3), i.e., roto-translation equivariance, on volumetric data. Volumetric image data is prevalent in many medical settings. Motivated by the recent work on separable group convolutions, we devise a SE(3) group convolution kernel separated into a continuous SO(3) (rotation) kernel and a spatial kernel. We approximate equivariance to the continuous setting by sampling uniform SO(3) grids. Our continuous SO(3) kernel is parameterized via RBF interpolation on similarly uniform grids. We demonstrate the advantages of our approach in volumetric medical image analysis. Our SE(3) equivariant models consistently outperform CNNs and regular discrete G-CNNs on challenging medical classification tasks and show significantly improved generalization capabilities. Our approach achieves up to a 16.5% gain in accuracy over regular CNNs.Comment: 10 pages, 1 figure, 2 tables, accepted at MICCAI 2023. Updated version to camera ready version

    PDE-based Group Equivariant Convolutional Neural Networks

    Full text link
    We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer's trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in symmetries such as rotation in addition to the standard translation equivariance of CNNs. Having all the desired symmetries included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics of our primary case of interest: roto-translation equivariance. We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers, we release our implementation with this article in the form of the LieTorch extension to PyTorch, available at https://gitlab.com/bsmetsjr/lietorch . Just like for linear convolution a morphological convolution is specified by a kernel that we train in our PDE-G-CNNs. In PDE-G-CNNs we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed by morphological convolutions. We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications with far fewer parameters than traditional CNNs.Comment: 27 pages, 18 figures. v2 changes: - mentioned KerCNNs - added section Generalization of G-CNNs - clarification that the experiments utilized automatic differentiation and SGD. v3 changes: - streamlined theoretical framework - formulation and proof Thm.1 & 2 - expanded experiments. v4 changes: typos in Prop.5 and (20) v5/6 changes: minor revisio

    On genuine invariance learning without weight-tying

    Full text link
    In this paper, we investigate properties and limitations of invariance learned by neural networks from the data compared to the genuine invariance achieved through invariant weight-tying. To do so, we adopt a group theoretical perspective and analyze invariance learning in neural networks without weight-tying constraints. We demonstrate that even when a network learns to correctly classify samples on a group orbit, the underlying decision-making in such a model does not attain genuine invariance. Instead, learned invariance is strongly conditioned on the input data, rendering it unreliable if the input distribution shifts. We next demonstrate how to guide invariance learning toward genuine invariance by regularizing the invariance of a model at the training. To this end, we propose several metrics to quantify learned invariance: (i) predictive distribution invariance, (ii) logit invariance, and (iii) saliency invariance similarity. We show that the invariance learned with the invariance error regularization closely reassembles the genuine invariance of weight-tying models and reliably holds even under a severe input distribution shift. Closer analysis of the learned invariance also reveals the spectral decay phenomenon, when a network chooses to achieve the invariance to a specific transformation group by reducing the sensitivity to any input perturbation

    Can strong structural encoding reduce the importance of Message Passing?

    Full text link
    The most prevalent class of neural networks operating on graphs are message passing neural networks (MPNNs), in which the representation of a node is updated iteratively by aggregating information in the 1-hop neighborhood. Since this paradigm for computing node embeddings may prevent the model from learning coarse topological structures, the initial features are often augmented with structural information of the graph, typically in the form of Laplacian eigenvectors or Random Walk transition probabilities. In this work, we explore the contribution of message passing when strong structural encodings are provided. We introduce a novel way of modeling the interaction between feature and structural information based on their tensor product rather than the standard concatenation. The choice of interaction is compared in common scenarios and in settings where the capacity of the message-passing layer is severely reduced and ultimately the message-passing phase is removed altogether. Our results indicate that using tensor-based encodings is always at least on par with the concatenation-based encoding and that it makes the model much more robust when the message passing layers are removed, on some tasks incurring almost no drop in performance. This suggests that the importance of message passing is limited when the model can construct strong structural encodings

    Latent Field Discovery In Interacting Dynamical Systems With Neural Fields

    Full text link
    Systems of interacting objects often evolve under the influence of field effects that govern their dynamics, yet previous works have abstracted away from such effects, and assume that systems evolve in a vacuum. In this work, we focus on discovering these fields, and infer them from the observed dynamics alone, without directly observing them. We theorize the presence of latent force fields, and propose neural fields to learn them. Since the observed dynamics constitute the net effect of local object interactions and global field effects, recently popularized equivariant networks are inapplicable, as they fail to capture global information. To address this, we propose to disentangle local object interactions -- which are SE(n)\mathrm{SE}(n) equivariant and depend on relative states -- from external global field effects -- which depend on absolute states. We model interactions with equivariant graph networks, and combine them with neural fields in a novel graph network that integrates field forces. Our experiments show that we can accurately discover the underlying fields in charged particles settings, traffic scenes, and gravitational n-body problems, and effectively use them to learn the system and forecast future trajectories.Comment: NeurIPS 2023. https://github.com/mkofinas/aethe

    Attentive Group Equivariant Convolutional Networks

    Get PDF
    Although group convolutional networks are able to learn powerful representations based on symmetry patterns, they lack explicit means to learn meaningful relationships among them (e.g., relative positions and poses). In this paper, we present attentive group equivariant convolutions, a generalization of the group convolution, in which attention is applied during the course of convolution to accentuate meaningful symmetry combinations and suppress non-plausible, misleading ones. We indicate that prior work on visual attention can be described as special cases of our proposed framework and show empirically that our attentive group equivariant convolutional networks consistently outperform conventional group convolutional networks on benchmark image datasets. Simultaneously, we provide interpretability to the learned concepts through the visualization of equivariant attention maps.Comment: Proceedings of the 37th International Conference on Machine Learning (ICML), 202
    • …
    corecore